Some theory for ordinal embedding

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Ordinal Embedding

We study the problem of ordinal embedding: given a set of ordinal constraints of the form distance(i, j) < distance(k, l) for some quadruples (i, j, k, l) of indices, the goal is to construct a point configuration x̂1, ..., x̂n in R that preserves these constraints as well as possible. Our first contribution is to suggest a simple new algorithm for this problem, Soft Ordinal Embedding. The key fe...

متن کامل

Uniqueness of Ordinal Embedding

Ordinal embedding refers to the following problem: all we know about an unknown set of points x1, . . . , xn ∈ R are ordinal constraints of the form ‖xi−xj‖ < ‖xk−xl‖; the task is to construct a realization y1, . . . , yn ∈ R that preserves these ordinal constraints. It has been conjectured since the 1960ies that upon knowledge of all ordinal constraints a large but finite set of points can be ...

متن کامل

Ordinal Embedding with a Latent Factor Model

Constructing low-dimensional embeddings based on ordinal measurements has been a subject of significant recent interest, motivated in part by machine learning applications using human input in a robust way. Recent work has focused on observations of comparisons on distances between objects. We consider a different model where the embedding is formed within a latent space of factors upon which a...

متن کامل

Ordinal Embedding: Approximation Algorithms and Dimensionality Reduction

This paper studies how to optimally embed a general metric, represented by a graph, into a target space while preserving the relative magnitudes of most distances. More precisely, in an ordinal embedding, we must preserve the relative order between pairs of distances (which pairs are larger or smaller), and not necessarily the values of the distances themselves. The relaxation of an ordinal emb...

متن کامل

Scalable Ordinal Embedding to Model Text Similarity

Practitioners of Machine Learning and related fields commonly seek out embeddings of object collections into some Euclidean space. These embeddings are useful for dimensionality reduction, for data visualization, as concrete representations of abstract notions of similarity for similarity search, or as features for some downstream learning task such as web search or sentiment analysis. A wide a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2017

ISSN: 1350-7265

DOI: 10.3150/15-bej792